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In economic reality, reactions to external shocks often come with a delay. On the

other hand, agents try to anticipate future developments. Both can lead to differ-

ence-differential equations with an advancing argument. These are more difficult

to handle than either difference or differential equations, but they have the merit of

added realism and increased credibility. We present a general method for deter-

mining the stability of any solution to a homogeneous linear difference-differential

equation with constant coefficients and advancing arguments. We will also dem-

onstrate the applicability of our concepts to economic modelling.
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Economically-motivated assumptions (see Krtscha [1993]) lead to the linear dif-

ference-differential equation with positive constants c and δ :

f’(x + δ ) = -c⋅ f(x) . (1.1)

The positive constant δ  plays an important role in the nature of the solution. For

δ = 0 the solution to (1.1) would be uniquely determined by the condition

f(x0) = y0 , whereas for δ > 0 the solution to (1.1) needs more: it is uniquely deter-

mined by any given function f: [x0, x0+δ]→ lR that is continuous and differenti-

able in (x0, x0+δ), implying the differentiability of f in (x0 ,∞ ). Then equation (1.1)

leads to the formula

∫ δ+δ−+−=δ+
x

0

)n(fdt))1n(t(fc)nx(f ,

by which we can regressively calculate f(x) for all n ∈  IΝ. We want to give a spe-

cific example:

 f′(x+1) = - f(x) with f(x) = 1 – x , x ∈  [0, 1] .   (1.2)

Then, by means of the regression-formula for x ∈[ 0, 1], we get

f(x+1) = - x + x2/2 ,

implying f(1) = 0 and  f(2)= -1/2, f(x+2) = x2/2 – x3/3 – ½,

f(x+3) = - x3/3! + x4/4! + x/2 – 1/3! and so on.

Now at least two questions arise:

•  Is this special solution f(x) to (1.2) stable in the following sense: “f(x) con-



2

verges if x converges against infinity”?

•  Does every solution to the difference-differential equation (1.2) converge?

As to equation (1.2), it is almost obvious that every solution is stable, but with re-

spect to equation (1.1), we will see later that the answer depends on the constant c.

But before we do so, we will show the consequences of a slight modification:

f′(x+1) = f(x) with f(x) = 1 + x , x ∈  [0, 1] ,  (1.3)

that has the obviously non-stable solution

1nxn,
!j

)1jx(
)x(f

n

0j

j

+≤≤+−=∑
=

 for n = 1, 2, 3, ...

The question is now whether it is possible to generate a stable solution to this dif-

ference-differential equation by choosing another suitable �������� initial function

f: [0, 1]→lR. Although the answer is “no”, there exist infinitely many ����������

initial functions implying a stable solution.

In order to prove our answers, we have to revert to an old theorem by Hilb (1918)

which is almost forgotten because it appeared to be too complicated for practical

use. Fortunately, the theorem also has important implications which are useful for

application.
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Hilb (1918) proved a basic theorem, which we now present in a form adapted to

our problem:

Theorem 1.

Let the general homogeneous linear difference-differential equation with the real

constants kpq and the monotonic increasing delays h0, h1, h2, ... ,hn

,0)hx(fk q
)p(

m

0p

n

0q
pq =+∑∑

= =

 where h0 = 0, f(0)(x) = f(x), have the characteristic equation
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0ezk)z(
m

0p

n

0q

zhp
pq

q ==Π ∑∑
= =

,

that comes from inserting f(x) = ezx in the difference-differential equation. (More-

over, let for the moment all the complex solutions zν to the characteristic equation

be single.) Then one can choose any m-times differentiable function

f: (x0,x0+hn)→lR satisfying the difference-differential equation in x = x0 + hn, if the

coefficients km0 and kmn are different from 0. However, if the latter condition is not

satisfied, f must generally be infinitely often differentiable1 in x0 + hn. By this

choice, the solution f(x) to the difference-differential equation is uniquely deter-

mined for all x > x0 , and f(x) is given by the uniformly convergent series
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where the convergence is uniform, i.e. it does not depend on the x∈[ x0,K], for any

big K.

Hilb arrived at this result by the use of the “Residuensatz” of Cauchy, and at the

end of his 33-page paper he mentions that this is the reason why the formula for

the coefficients Cν holds even if the solutions to the characteristic equation are not

unique. In this case, however, the Cν are of a polynomial form in x, the degree be-

ing m-1, if zν is an m-fold solution to the characteristic equation. The latter fact is

also mentioned by Hadeler (1974, p.170).

The consequence of this convergence is, roughly speaking, that in order to study

the behaviour of the solution f(x) when x tends to infinity, we can stop summaris-
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1 Krtscha (1991) gives an example of this case, but we could also give examples where it is not
necessary that f be infinitely often differentiable.
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Theorem 2.

Let M:= { zν = uν+ivν with real uν, vν}  be the set of all solutions to the characteris-

tic equation Π(z) = 0 in theorem 1; let further the solution f(x) to the correspond-

ing difference-differential equation be generated by some zνj = uνj + ivνj ∈  M, i.e.

f(x) is a linear combination of the functions []
M� ν , which are independent, being

also proved by Hilb (1918). Then the solution f(x) is stable if and only if all uνj are

negative.

Proof of Theorem 2:

Assuming there exists a positive uνj, then it is obvious that |f(x)| tends to infinity if

x tends to infinity, because all ezνx are independent. On the other hand, if all uνj are

negative, then watching the solution f(x) in (x0, K] by theorem 1 we may take only

a finite linear combination �(x) of the

[]

M

M M�
	


�
ν

ν

ν

′ )(

)( 0

Π
,

without making a big difference to the true solution f(x). Then this linear combi-

nation �(x) is stable because of the decreasing |�(x)| to zero; for all Cνj(x0) are con-

stant or utmost polynomial in x.  

Using theorem 2, we will now prove the assertions made in the introduction, and

then we proceed to solve a problem from economic theory.

($�����
�	��
����������
�����	�������%������

We insert a complex-valued function f(x) = ezx with z = a + ib, (a, b ∈ IR), and f′(x)

= zezx in (1.1), and then we have to solve the characteristic equation

z⋅ez = – c.  (3.1)

This equation has infinitely many complex solutions zν, and we now know that

every differentiable solution to a linear functional differential equation with con-

stant coefficients can be expressed by a convergent generalised Fourier series,

∑
ν

ν
ν⋅ ]�Γ  ,
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where the coefficients Γν are constants if all zν are single solutions to (3.1). How-

ever, it is nearly impossible to calculate all zν exactly, and Hilb’s formulas for the

Γν , moreover depending on the given function f in the starting interval [x0, x0 + δ],
are too complicated for practical calculation. (Nevertheless, it is sometimes possi-

ble to decide, when solutions zν =aν+ ibν with negative aν exist, i.e. stable solutions

to the differential equation with an advancing argument.)

Returning to the general solution to (3.1), we obtain.

(a + ib) e a+ib = - c , (3.2)

where b can be positive or negative. By splitting (3.2), we get the system

e a (a cos b – b sin b) = - c (3.3)

b cos b + a sin b = 0 , (3.4)

For sin b ≠ 0, equation (3.4) implies a = -b cos b /sin b. Inserting this term into

(3.3), we get

b /sin b = c⋅e b cos b /sin b. (3.5)

The graph of the left-hand side b /sin b of (3.5) is intersected with the graph of the
right-hand side of (3.5), and we see infinitely many solutions kb  for b>π, all im-

plying negative ka , but only one solution 1a  for 1b ∈  [0, π]. This solution implies

a negative 1a  for c < π/2 and further a positive 1a  for c > π/2. The case sin 1b  = 0

implies 1b  = 0 and, by (3.3), a negative 1a ; that means a stable real solution.

Hence, by means of theorem 2, we can state that every solution of (1.1) is stable if
and only if c ∈  (0, π/2). For c = π/2, we obtain 1a  = 0, 1b  = π/2, and the corre-

sponding solution is non-stable, but periodic.

This example shows all possible types of solutions to a linear difference-differen-

tial equation with constant coefficients, and, because all solutions to the character-

istic equation can be found graphically, it can be easily followed.

As to equation (1.3), there exist infinitely many zν = aν + ibν with negative aν, but

also one real positive zν. If we want a stable solution, we have to take a linear

combination of the ezνx with the negative aν, but this is not a �������� function.

For the following economic model, which is developed by von Kalckreuth



6

and Schröder (2002), it is again easy to find the real solutions zν to the characteris-

tic equation graphically. However, as global stability is a side condition of the

model, we have to show that all other solutions zν = aν + ibν have positive aν, im-

plying not bounded solutions. If this can be achieved, there is a unique ������ so-

lution to the system that determines the model dynamics.

In the first examples, we did not show the economic background, which is already

published, as we mainly wanted to give an overview of a general mathematical

solving possibility that is not commonly used. In Krtscha (1991) and some other

papers, the fixed point principle of Banach is applied. The disadvantage of this

method – compared with the application of theorem 2 – is its limitation to local

statements.

)$���������������������������
��
��

In order to investigate the interactions between the service life of capital, the term

structure of interest rates and the impact of monetary policy on open economies,

von Kalckreuth and Schröder (2002) develop a dynamic macroeconomic model.

This model considers an interest-rate structure within the framework of the Dorn-

busch (1976) overshooting model. Whereas the central bank is able to influence

the nominal short-term rate, aggregate demand depends on the real long-term rate.

The interest-rate structure embodied in this model leads to an advancing argument

in a system of functional equations. The authors solve this system by imposing ad-

ditional restrictions, in effect boiling the dynamics down to a first-order differen-

tial equation.

Here, we want to investigate the ������������ model dynamics. This leads to an

interesting linear differential-difference equation with advancing argument. We

show that there is a unique stable solution, which is identical to the solution de-

scribed by von Kalckreuth and Schröder (2002) in solving the restricted model.

The unrestricted model contains the following equations:

( ) ( )������ 21 α−α=− (4.1)

( ) ( ) ( )������ �−= (4.2)

( ) ( ) ( )( ) ( )��������� Ω3210 β−β+−β+β= (4.3)
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( ) ( )( )����� −= Γ� (4.4) 

( ) ( )����� �+= * (4.5)

( ) ( ) ( )( )������ −+= Ω
ΩΩ
1�  (4.6)

A bar denotes a steady-state value. All coefficients in (4.1)–(4.6) are strictly posi-

tive. (4.1) is the Cagan-form money-market equation with �, � and � as the loga-

rithms of nominal money supply, price level and constant real income and � as the

nominal money-market interest rate. While � is restricted to be a globally continu-

ous function of time, all the other endogenous variables are allowed to jump dis-

continuously in response to an unexpected shock in 0=� . Equation (4.2) defines

the real money-market interest rate � as the difference between the short-term

nominal interest rate � and inflation. In (4.3), the logarithm of aggregate demand,

�� depends on the logarithms of the real exchange rate �� − , the constant real
income and the long-term real interest rate Ω� , with maturity Ω . For simplicity, a

uniform service life of capital is assumed. Eq. (4.4) is a simple Phillips relation-
ship, in which the rate of inflation ����� =�  is determined by the ratio of (vari-

able) aggregate demand to (constant) supply. Equation (4.5) represents the open

interest-parity condition, with �� as the given nominal short-term interest rate in

the international money market. Equation (4.6), finally, relates the change in the

real long-term interest rate to the difference between future short-term rates and

present short-term rates.

The last equation brings in an advancing argument in an otherwise linear system of

differential equations. Because of its importance for our mathematical problem,

the relationship between short and long-term rates will now be derived from first

principles, as an arbitrage equation2 for bonds of finite maturity .

Complete foresight in a perfect asset market implies the equality of the instantane-

ous real rates of return on bonds and investments in the money market. Consider a

zero bond of arbitrary time to maturity Ω , issued at time � . Let �  be the issue
price and ( )��Ω  the long-term rate for bonds with time to maturity Ω . At time

Ω+� , then, the holder of the bond receives a payment of ( )( )��� ΩΩexp . Since

there are no interest payments until maturity, according to the Hotelling rule, the

arbitrage condition is given by:

                                                
2 See, for example, McCulloch (1971). Fisher/Turnovsky (1992) also use this equation in the
context of a dynamic macroeconomic model.
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( )
( ) ( )��
��
�� =

�
 , (4.7)

with ( )��  as the real market value of a bond at any point in time s between �  and

Ω+� . Taking into consideration the terminal condition that, at maturity, the real
market value ( )��  is bound to be equal to the real value of principal and accrued

interest, the general solution of (2.7) becomes:

( ) ( ) ( ) 





ττ−Ω= ∫

Ω+

Ω �������
W

V

exp  . (4.8)

At the date of issue, however, the value of this expression must be equal to �,

which immediately yields the arbitrage equation:

( ) τ
Ω

= ∫
Ω+

τΩ ����
W

W

1
 .  (4.9)

Equation (4.9) gives us the term structure of interest rates, according to the expec-

tation theory, for the case of continuous interest compounding. The (continuous)
long-term rate Ω�  is determined as the arithmetic mean of the short-term rates

within the relevant time interval. The former thus anticipates the movement of the

latter. Taking the derivative on both sides yields equation (4.6). The interest rate

Ω� , by definition, gives us the cost of capital of an investment project character-

ised by one single payment in �  and one single, certain return of V at the end of its

lifetime Ω . Investigating the dynamic system for varying Ω  thus permits us to de-

scribe the effects of a decreasing service life of capital, as a result of accelerated

technical progress, on the dynamics of macroeconomic adjustment to various kinds

of shocks.

In order to solve system (4.1)–(4.6) analytically, von Kalckreuth and Schröder

(2002) use the following ���������� restriction on the time path:

WW
��
~λ=� ,  0, <λ∈λ * . (4.10)

This restriction requires the perfect foresight paths to be of an especially simple,

adaptive structure. Here, we do not intend to discuss the economic results of von

Kalckreuth and Schröder (2002).3 Instead, ������������� ����!�����
��
���������"��#

                                                
3 The paper is available on the website of the co-author, www.von-kalckreuth.de
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������������"��
����������������������������
���������!��
���������. This is possible,

if there are no additional ������ solutions to the system, apart from the solution

found by imposing the restriction (4.10). Unstable solutions are ruled out by the

assumption of perfect foresight, if we assume that all real (i.e. not nominal) vari-

ables are bounded.

First of all, we will reduce the system to one single dynamic equation. Long-run

equilibrium is characterised by the conditions

( ) 0=���  and ( ) 0=��� .  (4.11)

Substituting these conditions into the system (4.1) – (4.6) readily yields a particu-

lar solution to the system, the steady-state solution. We can therefore concentrate

on finding the solutions to the following set of homogeneous equations:4

( ) ( )���� 2α= (4.1')

( ) ( ) ( )������ �−= (4.2')

( ) ( ) ( ) ( )�������� Ωβ−β−β= 311 (4.3')

( ) ( )���� Γ=� (4.4')

( ) ( )���� �= (4.5')

( ) ( ) ( )( )������ −Ω+
Ω

=Ω
1� (4.6')

Repeated substitution yields the following homogeneous differential-difference

equation with advancing argument:

( ) ( ) ( ) ( ) ( )��$���%��$��%��� ���� −Ω+++Ω+−= , (4.12)

where:

0
2

3 >
αΩ
βΓ

=%  (4.13)  

0)( 3
1

2

>>
Ω
β

+β
α
Γ= %$ (4.14)

02 >α=� . (4.15)

                                                
4 The levels of the variables have to be interpreted as deviations from the steady state. In order to
save notation, we will not introduce new symbols.
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With

2:)( 	%�	�$�	%�$	 ]] −+−−=Π ΩΩ  , (4.16)

we get the characteristic equation 

0)( =Π 	 . (4.17)

It is not difficult to show graphically, as von Kalckreuth and Schröder (2002) have

done, that there is one and only one negative real solution to the characteristic

equation. But only if this stable solution is unique does the model have explana-

tory power. We will proceed to prove that this is indeed the case.

Lemma :

There is no complex solution � �	 +−=  with 0≥� and 0≠  to the characteristic

equation 02 =−+−− 	%�	�$�	%�$ ]] ΩΩ  with �$% ≤<< 0   and   0 .

Proof:

By inserting � �	 +−=  in the characteristic equation and splitting up into the real

and the imaginary part, we obtain a system of two equations:

222

222

)1(

2)1)((1
cos

� ��

�� �� �
%

 �
%
$

X

++
++−⋅+Ω= Ω− (4.18)

� �� �� 
� ��

 �
%

X

2)1()(

)1(
sin

1
22

222

++−
++⋅= − ΩΩ . (4.19)

Since 1cos  and   1 ≤> −  ��
%
$

X , equation (4.18) implies the inequality

02)1)(( 222 >++− �� �� � ; (4.20)

so that 00 ≠∧=  �  is impossible. A purely imaginary solution to the characteris-

tic equation, i.e. a periodic solution, can thus be excluded.

In order to consider solutions within the second and third quadrant of the complex

plane, we define:

&� =: , with 0>�  and fixed real 0≠& ,

and insert it in (4.19), to get:
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2)1(

)1(sin1
2

2222

2 ++
++⋅Ω= Ω−

��&

��&��

&�

&�
�

%
X  .

Inserting this in (2.18), we obtain the equation:

( )( )








++
++−+= µ−

2)1(

211sin
cos

2

22

��&

��&��&
&
&�

&��
%
$ ΩΩΩ , (4.21)

which implies the inequality:

 
( )

( ) 







++
++−⋅Ω+≤ Ωµ−

2

22

12

11sin
1

&��

&��&
&
&�

�
%
$

 . (4.22)

Owing to (4.20), the last ratio in (4.22) is positive, and as 21 2 <−& , this expres-

sion is bounded by 1. Hence (4.22) implies:

1

!2
1

1sin
1

22
≤

+Ω+Ω+

Ω
+

≤

Ω+
≤ Ω

�
�

�

&

�&

�
&
&�

%
$

X

 .

This last inequality is in contradiction to $% < . This simultaneously proves our

lemma, and the fact that a non-exploding and non-trivial solution to the differen-

tial-difference equation can only be based upon a negative real solution of the

characteristic equation to the differential difference equation. It is easily shown
graphically that one and only one negative real solution *1 λ=	  exists, see von

Kalckreuth and Schröder (2002). So the series of the non-exploding solution is re-

duced to

1
1)(’

)(
1

�
	

�

�

[]

Π
−= ,

where the constant 1� , defined in theorem 1, can be chosen in a way that the initial

condition for 0=�  is fulfilled. 

This result confirms that dropping the additional restrictions in the basic model

and thus making the generalisation into an unrestricted perfect foresight model

does not lead to additional stable solutions for the dynamic system. Thus the eco-

nomic conclusions developed in von Kalckreuth and Schröder (2002) are not af-

fected by this generalisation.
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